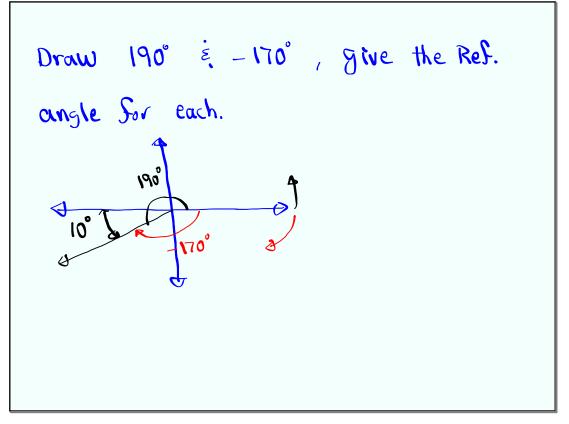
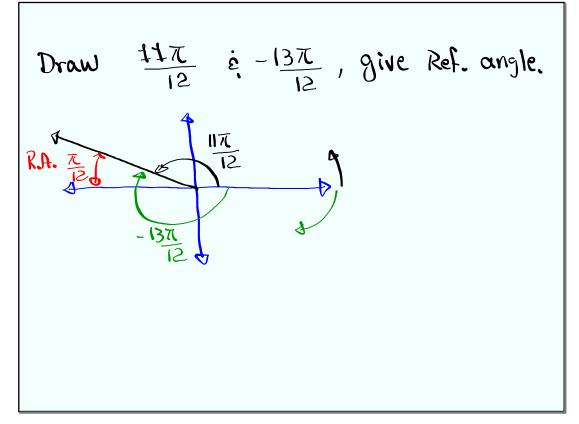


Feb 19-8:47 AM

1) Convert 40° to radians

$$180^{\circ} = \pi$$
 Rad. $40^{\circ} = \frac{40\pi}{180}$ Rad.
 $1^{\circ} = \frac{\pi}{180}$ Rad. $\frac{10^{\circ}}{180}$ Rad.
2) Convert 5 π To degrees. 2π Rad.
3) Convert 5 π To degrees. 2π Rad.
 π Rad = 180°
 1 Rad = $(\frac{180}{\pi})^{\circ}$
 5π Rad = $(\frac{5\pi}{8}, \frac{180}{\pi})^{\circ} = \frac{5\cdot80}{8}^{\circ}$
 $= 112.5^{\circ}$


Consider a Circular Sector with Central angle of 15° and 10cm Radius 1) Area = $\frac{1}{2}r^2\theta$ = $\frac{1}{2}(10)^2 \cdot \frac{7}{12} = \frac{1007}{2 \cdot 12}$ 15° = ? Rod. S 15°= 30 57 Cm 2) Arc length $S = \Gamma \theta = 10 \cdot \frac{\pi}{12}$ 5π

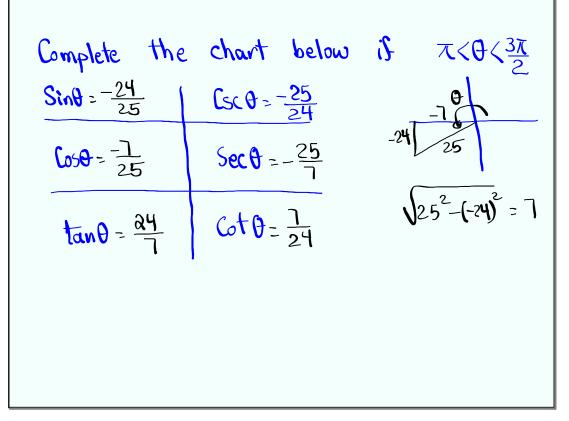

Oct 17-10:35 AM

A fan has a blade of
$$3-51 \text{ long.}$$

IZ. $2\pi = 24\pi$
It makes IZ revolutions per second.
Find Linear and angular speed
 $V = \frac{S}{t}$ $W = \frac{\theta}{t}$ $V = rW$
 $V = rW$ $W = \frac{24\pi}{1}$ Rad/sec
 $= 3.24\pi = 72\pi$ $= 24\pi$ Rod./sec.
 ≈ 226 SH/sec.

A circular sector has a central angle of 120° and area of 54.8 cm². 120°=2(60°) find its radius. - 2<u>7</u> 1500 $A = \frac{1}{2}r^2\theta$ $54.8 = \frac{1}{2} \cdot r^2 \cdot \frac{2\pi}{3}$ $r\approx 7.2$ Cm

Oct 17-10:45 AM


Oct 17-10:52 AM

A Small pulley is turning
$$145(2\pi)=290\pi$$

Per minute
Find angular Speed per Second.
 $W = \frac{\theta}{t} = \frac{290\pi}{1-Min} \cdot \frac{1-Min}{60 \text{ Sec.}}$
 $= \frac{290\pi}{60} \text{ Rod/Sec.}$
 $\approx 15.2 \text{ Rod./Sec.}$

A 3-St blade makes
$$10(2\pi) = 20\pi$$

in 42 Seconds.
Sind angular Speed rad/min.
 $W = \frac{\theta}{t} = \frac{20\pi}{42} \frac{20\pi}{5} \frac{60}{1} \frac{5}{1} \frac{60}{1} \frac{5}{1} \frac{60}{12} \frac{5}{1} \frac{60}{1} \frac{5}{1} \frac{60}{1} \frac{5}{1} \frac{5}{1} \frac{60}{1} \frac{5}{1} \frac{$

Oct 17-10:59 AM

$$\tan \theta = -\frac{1}{5}$$
Find
1) $\cot \theta = \frac{1}{\tan \theta} = \frac{1}{-\frac{1}{5}} = -\frac{5}{-5}$
2) $\tan(-\theta) = -\tan \theta = -(-\frac{1}{5}) = \frac{1}{5}$
only $\cos(-\theta) = \cos \theta$ $\sin(-\theta) = -\sin \theta$
 $\tan(-\theta) = -\tan \theta$

Oct 17-11:08 AM

Simplify
$$\frac{1}{1 - Sec \chi} + \frac{1}{1 + Sec \chi}$$

= $\frac{1 + Sec \chi}{1 - Sec \chi} + \frac{1}{1 + Sec \chi}$
= $\frac{1 + Sec \chi}{(1 - Sec \chi)(1 + Sec \chi)}$
= $\frac{2}{1 - Sec^2 \chi} = \frac{2}{1 - A - tan^2 \chi}$
Recall
 $1 + tan^2 \chi = Sec^2 \chi$

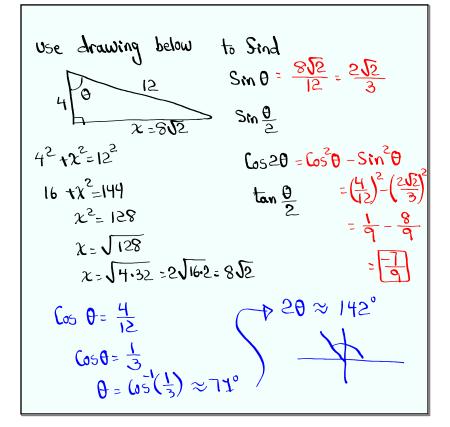
Verify

$$\frac{1 + \sin \chi + \cos \chi}{1 - \sin \chi + \cos \chi} = \frac{1 + \sin \chi}{\cos \chi}$$

$$\frac{1 + \sin \chi + \cos \chi}{1 - \sin \chi + \cos \chi} \stackrel{?}{:} \frac{1 + \sin \chi}{\cos \chi}$$

$$\frac{1 - \sin \chi + \cos \chi}{\cos \chi} \stackrel{?}{:} \frac{1 + \sin \chi}{\cos \chi}$$

$$\frac{1 - \sin \chi + \cos \chi}{\cos \chi} \stackrel{?}{:} \frac{1 + \sin \chi}{\cos \chi}$$


$$\frac{1 - \sin \chi + \cos \chi}{\cos \chi} \stackrel{?}{:} \frac{1 - \sin \chi}{\cos \chi}$$

$$\frac{1 - \sin \chi}{\cos \chi} + \cos \chi \stackrel{?}{:} \frac{1 - \sin \chi}{\cos \chi} \stackrel{?}{:} \frac{1 - \sin \chi}{\cos \chi}$$

$$\frac{1 - \sin \chi}{\cos \chi} + \cos \chi \stackrel{?}{:} \frac{1 - \sin \chi}{\cos \chi} \stackrel{?}{:} \frac{1 - \sin \chi}{\cos \chi} \stackrel{!}{:} \frac{1 - \sin \chi}{\cos \chi}$$

$$\frac{1 - \sin \chi}{\cos \chi} \stackrel{?}{:} \frac{1 - \sin \chi}{\cos \chi} \stackrel{?}{:} \frac{1 - \sin \chi}{\cos \chi} \stackrel{!}{:} \frac{1 -$$

Oct 17-11:16 AM

Oct 17-11:26 AM

$$Sin \frac{\theta}{2} = \pm \sqrt{\frac{1-\cos\theta}{2}} \qquad \begin{array}{l} 0^{\circ} \langle \theta \langle 90^{\circ} \\ \theta \approx 71^{\circ} \\ = \sqrt{\frac{1-\frac{1}{3}}{2}} \qquad \begin{array}{l} \theta \approx 35.5^{\circ} \\ 2 \approx 35.5^{\circ} \\ = \sqrt{\frac{3-1}{6}} = \sqrt{\frac{2}{6}} \qquad \begin{array}{l} 01 \\ = \sqrt{\frac{3}{6}} = \sqrt{\frac{2}{6}} \\ = \sqrt{\frac{1}{3}} = \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3} \\ = \sqrt{\frac{1}{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3} \\ ton \frac{\theta}{2} = \frac{1-\cos\theta}{\sin\theta} = \frac{\sin\theta}{1+\cos\theta} \\ ton \theta = \frac{\frac{2\sqrt{2}}{3}}{1+\frac{1}{3}} = \frac{2\sqrt{2}}{3+1} = \frac{2\sqrt{2}}{4} \cdot \frac{\sqrt{2}}{2} \end{array}$$

Oct 17-11:33 AM

write as product

$$\sin 4x + \sin 6x$$

 $\sin 4x \sin B = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$
 $= 2 \sin \frac{4x+6x}{2} \cos \frac{4x-6x}{2}$
 $= 2 \sin 5x \cos(-x)$
 $= 2 \sin 5x \cos(-x)$

Write as sum
Sin 5x Sin
$$x = \frac{1}{2} \left[\log(5x-x) - \log(5x+x) \right]$$

Sin A Sin B = $\frac{1}{2} \left[\log(A-B) - \log(A+B) \right]$
 $= \frac{1}{2} \left[\cos 4x - \cos 6x \right]$

Oct 17-11:41 AM